高等教育出版
熱門: 吳清山  丘愛鈴  吳勁甫  九年一貫課程  三角關係  文化領導  
高等教育出版
首頁 臺灣期刊   學校系所   學協會   民間出版   大陸/海外期刊   政府機關   學校系所   學協會   民間出版   DOI註冊服務
閱讀全文
篇名
人机协同的数据智慧机制:智慧教育的数据价值炼金术
並列篇名
Human-Machine Collaborated Data Wisdom Mechanisms: The Alchemy of Data Value for Smarter Education
作者 彭紅超祝智庭
英文摘要
Data value is increasingly emphasized in education, like other industries. However,the density of this value is so low that it cannot serve education purpose directly, let alone serve the smarter education. Data wisdom refers to a class of models for representing structural and/or functional relationships between data, information, knowledge ,and wisdom. The four levels of data wisdom provide a way for solving the above problems. But,the effective methods to make data evolve into wisdom through information and knowledge have not been found. Thus, we developed a kind of human-machine collaborated data wisdom mechanisms. It describes how to achieve the evolution of data into wisdom by using the understanding of both human and machine. Human understanding includes four layers : know by practicing, know by sensing, know by constructing and know by critiquing. Machine understanding also includes four layers : know by perceiving, know by describing, know by mining and know by learning. With the above-mentioned assumption, data wisdom mechanisms can be divided into three parts : the mechanism of the relational organization of data, the mechanism of pattern recognition and interpretation of information and the mechanism of principle derivation of knowledge. The first part is for data evolution into information which has four steps : a) introduce monitoring goals of teaching and students behavior,b) determine the relationship of monitored data, c) organize data based on determined relationship, d) and represent the meaning of organized data by using visual charts and dashboards. The second part is for information evolution into knowledge which also has four steps : a ) extract the features of objects from organized data, b ) inquiry meaning from visual charts and dashboards, c ) mine information patterns from extracted objects’ features via inquired meaning,d) and explain and evaluate the mined information patterns. The third part is for knowledge evolution into wisdom which is four steps : a) inquiry the reasons for the behavior and performance of students inspired by explained and evaluated information patterns, b ) evaluate the value of student behavior and performance based on inquired reasons, c) learn the service criteria from b) and the service decisions from d) by machines, and d) generate learning service decisions based on the insight obtained from b). We hope that the proposed data wisdom mechanisms can provide a feasible scheme of extracting value from data for the smarter education, and then it can further help to optimize the teaching and learning behaviors in smarter education.
起訖頁 041-050
關鍵詞 数据智慧智慧教育数据价值人机协同精准决策data wisdomsmarter educationdata valuehuman-machine collaborationprecise decision mak-ingCSSCI
刊名 開放教育研究  
期數 201804 (24:2期)
出版單位 上海遠程教育集團;上海電視大學
該期刊
上一篇
中国教育领域人工智能研究论纲——基于通用人工智能视角
該期刊
下一篇
从工具性思维到人工智能思维——教育技术的危机与教育技术学的转型

高等教育知識庫  閱讀計畫  教育研究月刊  新書優惠  

教師服務
合作出版
期刊徵稿
聯絡高教
高教FB
讀者服務
圖書目錄
教育期刊
訂購服務
活動訊息
數位服務
高等教育知識庫
國際資料庫收錄
投審稿系統
DOI註冊
線上購買
高點網路書店 
元照網路書店
博客來網路書店
教育資源
教育網站
國際教育網站
關於高教
高教簡介
出版授權
合作單位
知識達 知識達 知識達 知識達 知識達 知識達
版權所有‧轉載必究 Copyright2011 高等教育文化事業有限公司  All Rights Reserved
服務信箱:edubook@edubook.com.tw 台北市館前路 26 號 6 樓 Tel:+886-2-23885899 Fax:+886-2-23892500