IAMPDNet: Instance-aware and Multi-part Decoupled Network for Joint Detection and Embedding,ERICDATA高等教育知識庫
高等教育出版
熱門: 羅文君  謝傳崇  陳淑敏  吳清山  胡夢鯨  葉俊廷  
高等教育出版
首頁 臺灣期刊   學校系所   學協會   民間出版   大陸/海外期刊   政府機關   學校系所   學協會   民間出版   DOI註冊服務
篇名
IAMPDNet: Instance-aware and Multi-part Decoupled Network for Joint Detection and Embedding
並列篇名
IAMPDNet: Instance-aware and Multi-part Decoupled Network for Joint Detection and Embedding
作者 Pan YangXiong LuoJiankun Sun
英文摘要

Video surveillance applications play an important role in smart cities. Recently, intelligent video surveillance methods have been widely investigated to address large-scale video data, among which multi-object tracking (MOT) is the most popular method, which aims to track every object appearing in the video for monitoring. MOT is essential for deep intelligent perception. Considering inference speed, joint detection and embedding (JDE) has become a new paradigm for MOT. JDE is to obtain detection results and object features through one forward propagation. However, most JDE models lack instance awareness ability and multi-part feature extraction ability, which may lead to the lack of discrimination of extracted instance features. To address these problems, in this paper we propose an instance-aware and multi-part decoupled network (IAMPDNet), which can perceive all instances in the environment and extract multi-part features from the instances. Specifically, our IAMPDNet consists of three key modules: a complementary attention module used to perceive all instances in the environment, a feature extraction module used to decouple multi-part features from the instances, and an adaptive aggregation module used to fuse multi-level features of instances. Extensive experiments on multiple MOT benchmarks demonstrate that our IAMPDNet achieves higher tracking accuracy and lower identity switches against recent MOT methods.

 

起訖頁 1429-1439
關鍵詞 Video surveillance applicationsJoint Detection and Embedding (JDE)Instance awarenessMulti-part feature decouple
刊名 網際網路技術學刊  
期數 202211 (23:6期)
出版單位 台灣學術網路管理委員會
DOI 10.53106/160792642022112306024  複製DOI
QR Code
該期刊
上一篇
A Multi-modal Feature Fusion-based Approach for Mobile Application Classification and Recommendation
該期刊
下一篇
Time-based Calibration: A Way to Ensure that Stitched Images are Captured Simultaneously

高等教育知識庫  閱讀計畫  教育研究月刊  新書優惠  

教師服務
合作出版
期刊徵稿
聯絡高教
高教FB
讀者服務
圖書目錄
教育期刊
訂購服務
活動訊息
數位服務
高等教育知識庫
國際資料庫收錄
投審稿系統
DOI註冊
線上購買
高點網路書店 
元照網路書店
博客來網路書店
教育資源
教育網站
國際教育網站
關於高教
高教簡介
出版授權
合作單位
知識達 知識達 知識達 知識達 知識達 知識達
版權所有‧轉載必究 Copyright2011 高等教育文化事業有限公司  All Rights Reserved
服務信箱:edubook@edubook.com.tw 台北市館前路 26 號 6 樓 Tel:+886-2-23885899 Fax:+886-2-23892500