A Multi-modal Feature Fusion-based Approach for Mobile Application Classification and Recommendation,ERICDATA高等教育知識庫
高等教育出版
熱門: 羅文君  謝傳崇  陳淑敏  吳清山  胡夢鯨  葉俊廷  
高等教育出版
首頁 臺灣期刊   學校系所   學協會   民間出版   大陸/海外期刊   政府機關   學校系所   學協會   民間出版   DOI註冊服務
篇名
A Multi-modal Feature Fusion-based Approach for Mobile Application Classification and Recommendation
並列篇名
A Multi-modal Feature Fusion-based Approach for Mobile Application Classification and Recommendation
作者 Buqing CaoWeishi ZhongXiang XieLulu ZhangYueying Qing
英文摘要

With the rapid growth of the number and type of mobile applications, it becomes challenging to accurately classify and recommend mobile applications according to users’ individual requirements. The existing mobile application classification and recommendation methods, for one thing, do not take into account the correlation between large-scale data and model. For another, they also do not fully exploit the multi-modal, fine-grained interaction features with high-order and low-order in mobile application. To tackle this problem, we propose a mobile application classification and recommendation method based on multi-modal feature fusion. The method firstly extracts the image and description features of the mobile application using an “involution residual network + pre-trained language representation” model (i.e. the TRedBert model). Afterwards, these features are fused by using the attention mechanism in the transformer model. Then, the method classifies the mobile applications based on the fused features through a softmax classifier. Finally, the method extracts the high-order and low-order embedding features of the mobile app with a bi-linear feature interaction model (FiBiNET) based on the classification results of the mobile app, by combining the Hadamard product and inner product to achieve fine-grained high-order and low-order feature interaction, to update the mobile app representation and complete the recommendation task. The multiple sets of comparison experiments are performed on Kaggle’s real dataset, i.e., 365K IOS Apps Dataset. And the experimental results demonstrated that the proposed approach outperforms other methods in terms of Macro F1, Accuracy, AUC and Logloss.

 

起訖頁 1417-1427
關鍵詞 Mobile applicationsMulti-modal feature fusionAttention mechanismBi-linear feature interaction
刊名 網際網路技術學刊  
期數 202211 (23:6期)
出版單位 台灣學術網路管理委員會
DOI 10.53106/160792642022112306023  複製DOI
QR Code
該期刊
上一篇
Segmentation-based Decision Networks for Steel Surface Defect Detection
該期刊
下一篇
IAMPDNet: Instance-aware and Multi-part Decoupled Network for Joint Detection and Embedding

高等教育知識庫  閱讀計畫  教育研究月刊  新書優惠  

教師服務
合作出版
期刊徵稿
聯絡高教
高教FB
讀者服務
圖書目錄
教育期刊
訂購服務
活動訊息
數位服務
高等教育知識庫
國際資料庫收錄
投審稿系統
DOI註冊
線上購買
高點網路書店 
元照網路書店
博客來網路書店
教育資源
教育網站
國際教育網站
關於高教
高教簡介
出版授權
合作單位
知識達 知識達 知識達 知識達 知識達 知識達
版權所有‧轉載必究 Copyright2011 高等教育文化事業有限公司  All Rights Reserved
服務信箱:edubook@edubook.com.tw 台北市館前路 26 號 6 樓 Tel:+886-2-23885899 Fax:+886-2-23892500