Research on the Sensory Feeling of Product Design for Electric Toothbrush Based on Kansei Engineering and Back Propagation Neural Network,ERICDATA高等教育知識庫
高等教育出版
熱門: 羅文君  簡淑芸  Yeonjoo Lim  SDGs  Jong-Hyouk Lee  Beyond 5G  
高等教育出版
首頁 臺灣期刊   學校系所   學協會   民間出版   大陸/海外期刊   政府機關   學校系所   學協會   民間出版   DOI註冊服務
篇名
Research on the Sensory Feeling of Product Design for Electric Toothbrush Based on Kansei Engineering and Back Propagation Neural Network
並列篇名
Research on the Sensory Feeling of Product Design for Electric Toothbrush Based on Kansei Engineering and Back Propagation Neural Network
作者 吳正仲Feng LuoZhe-Hui LinYu-Tong Chen
英文摘要

Over the years, China’s electric toothbrush market has been expanding. Consumers pay more attention to the sensory feeling of product shape, under the premise of product function satisfaction. Therefore, this research collected 215,827 product reviews made by consumers online and 200 samples of varying electric toothbrush samples using a web crawler. Then, 3 groups of representative perceptual words were obtained from the extraction of numerous reviews via Word2vec, factor analysis and hierarchical cluster analysis. Meanwhile, with the help of morphological analysis, design elements of sample shape were de-structured on the 32 representative samples that were extracted from the collected sample using multi-dimensional scaling and hierarchical cluster analysis. On this basis, consumers’ perceptual images were measured using semantic differential scale with 415 valid samples acquired in total. Finally, two relationship models between product design elements and consumers’ perceptual images were established by quantitative theory type I (QTTI) and back propagation neural network. By comparison, the QTTI model has more accurate prediction. This study provides defined design indexes and references for designers’ black box design patterns through establishing an effective model via combining web crawler technology and systematic analysis.

 

起訖頁 863-871
關鍵詞 Electric toothbrushKansei engineeringWeb crawlerWord2VecBack Propagation Neural Network
刊名 網際網路技術學刊  
期數 202207 (23:4期)
出版單位 台灣學術網路管理委員會
DOI 10.53106/160792642022072304021  複製DOI
QR Code
該期刊
上一篇
Optimized E-Class Power Amplifiers Widely Covering 4.5 GHz from 2.5 to 7.0 GHz
該期刊
下一篇
Detection and Blocking Method against DLL Injection Attack Using PEB-LDR of ICS EWS in Smart IoT Environments

高等教育知識庫  閱讀計畫  教育研究月刊  新書優惠  

教師服務
合作出版
期刊徵稿
聯絡高教
高教FB
讀者服務
圖書目錄
教育期刊
訂購服務
活動訊息
數位服務
高等教育知識庫
國際資料庫收錄
投審稿系統
DOI註冊
線上購買
高點網路書店 
元照網路書店
博客來網路書店
教育資源
教育網站
國際教育網站
關於高教
高教簡介
出版授權
合作單位
知識達 知識達 知識達 知識達 知識達 知識達
版權所有‧轉載必究 Copyright2011 高等教育文化事業有限公司  All Rights Reserved
服務信箱:edubook@edubook.com.tw 台北市館前路 26 號 6 樓 Tel:+886-2-23885899 Fax:+886-2-23892500