Design of Malicious Code Detection System Based on Binary Code Slicing,ERICDATA高等教育知識庫
高等教育出版
熱門: 羅文君  SDGs  吳清山  構音/音韻異常  Hotel introduction  林俊瑩  
高等教育出版
首頁 臺灣期刊   學校系所   學協會   民間出版   大陸/海外期刊   政府機關   學校系所   學協會   民間出版   DOI註冊服務
篇名
Design of Malicious Code Detection System Based on Binary Code Slicing
並列篇名
Design of Malicious Code Detection System Based on Binary Code Slicing
作者 Mohan LiuXiaoming TangHanming Fei
英文摘要

Malicious code threatens the safety of computer systems. Researching malicious code design techniques and mastering code behavior patterns are the basic work of network security prevention. With the game of network offense and defense, malicious code shows the characteristics of invisibility, polymorphism, and multi-dismutation. How to correctly and effectively understand malicious code and extract the key malicious features is the main goal of malicious code detection technology. As an important method of program understanding, program slicing is used to analyze the program code by using the idea of “decomposition”, and then extract the code fragments that the analyst is interested in. In recent years, data mining and machine learning techniques have been applied to the field of malicious code detection. The reason why it has become the focus of research is that it can use data mining to dig out meaningful patterns from a large amount of existing code data. Machine learning can It helps to summarize the identification knowledge of known malicious code, so as to conduct similarity search and help find unknown malicious code. The machine learning heuristic malicious code detection method firstly needs to automatically or manually extract the structure, function and behavior characteristics of the malicious code, so we can first slice the malicious code and then perform the detection. Through the improvement of the classic program slicing algorithm, this paper effectively improves the slicing problem between binary code processes. At the same time, it implements a malicious code detection system. The machine code byte sequence variable-length N-gram is used as the feature extraction method to further prove that the efficiency and accuracy of malicious code detection technology based on data mining and machine learning.

 

起訖頁 225-238
關鍵詞 binary analysisslicing; malicious code detectionnetwork security
刊名 電腦學刊  
期數 202206 (33:3期)
DOI 10.53106/199115992022063303018  複製DOI
QR Code
該期刊
上一篇
Bayesian Personalized Ranking with the Synthesis of Multiple User and Item Classification

高等教育知識庫  閱讀計畫  教育研究月刊  新書優惠  

教師服務
合作出版
期刊徵稿
聯絡高教
高教FB
讀者服務
圖書目錄
教育期刊
訂購服務
活動訊息
數位服務
高等教育知識庫
國際資料庫收錄
投審稿系統
DOI註冊
線上購買
高點網路書店 
元照網路書店
博客來網路書店
教育資源
教育網站
國際教育網站
關於高教
高教簡介
出版授權
合作單位
知識達 知識達 知識達 知識達 知識達 知識達
版權所有‧轉載必究 Copyright2011 高等教育文化事業有限公司  All Rights Reserved
服務信箱:edubook@edubook.com.tw 台北市館前路 26 號 6 樓 Tel:+886-2-23885899 Fax:+886-2-23892500