Image Domain Generalization Method based on Solving Domain Discrepancy Phenomenon,ERICDATA高等教育知識庫
高等教育出版
熱門: 羅文君  SDGs  謝傳崇  吳清山  林俊瑩  胡夢鯨  
高等教育出版
首頁 臺灣期刊   學校系所   學協會   民間出版   大陸/海外期刊   政府機關   學校系所   學協會   民間出版   DOI註冊服務
篇名
Image Domain Generalization Method based on Solving Domain Discrepancy Phenomenon
並列篇名
Image Domain Generalization Method based on Solving Domain Discrepancy Phenomenon
作者 Zhi TanZhao-Fei Teng
英文摘要

In order to solve the problem that the recognition performance is obviously degraded when the model trained by known data distribution transfer to unknown data distribution, domain generalization method based on attention mechanism and adversarial training is proposed. Firstly, a multi-level attention mechanism module is designed to capture the underlying abstract information features of the image; Secondly, increases the loss limit of the generative adversarial network,the virtual enhanced domain which can simulate the target domain of unknown data distribution is generated by adversarial training on the premise of ensuring the consistency of data features and semantics; Finally, through the data mixing algorithm, the source domain and virtual enhanced domain are mixed and input into the model to improve the performance of the classifier. The experiment is carried out on five classic digit recognition and CIFAR-10 series datasets. The experimental results show that the model can learn better decision boundary, generate virtual enhanced domain and significantly improve the accuracy of recognition after model transplantation. Comparing to the previous method, our method improves average accuracy by at least 2.5% and 3% respectively. Experiments on five classic digit recognition and CIFAR-10 series datasets which significantly improves the classification average accuracy after model transfer.

 

起訖頁 171-185
關鍵詞 attention mechanismgenerative adversarial networkdomain generalizationimage recognition
刊名 電腦學刊  
期數 202206 (33:3期)
DOI 10.53106/199115992022063303014  複製DOI
QR Code
該期刊
上一篇
Petrochemical Gearbox Fault Location and Diagnosis Method Based on Distributed Bayesian Model and Neural Network
該期刊
下一篇
Research on Path Planning Strategy of Rescue Robot Based on Reinforcement Learning

高等教育知識庫  閱讀計畫  教育研究月刊  新書優惠  

教師服務
合作出版
期刊徵稿
聯絡高教
高教FB
讀者服務
圖書目錄
教育期刊
訂購服務
活動訊息
數位服務
高等教育知識庫
國際資料庫收錄
投審稿系統
DOI註冊
線上購買
高點網路書店 
元照網路書店
博客來網路書店
教育資源
教育網站
國際教育網站
關於高教
高教簡介
出版授權
合作單位
知識達 知識達 知識達 知識達 知識達 知識達
版權所有‧轉載必究 Copyright2011 高等教育文化事業有限公司  All Rights Reserved
服務信箱:edubook@edubook.com.tw 台北市館前路 26 號 6 樓 Tel:+886-2-23885899 Fax:+886-2-23892500