Soil Moisture Content Prediction Model for Tea Plantations Based on a Wireless Sensor Network,ERICDATA高等教育知識庫
高等教育出版
熱門: 羅文君  SDGs  吳清山  構音/音韻異常  Hotel introduction  林俊瑩  
高等教育出版
首頁 臺灣期刊   學校系所   學協會   民間出版   大陸/海外期刊   政府機關   學校系所   學協會   民間出版   DOI註冊服務
篇名
Soil Moisture Content Prediction Model for Tea Plantations Based on a Wireless Sensor Network
並列篇名
Soil Moisture Content Prediction Model for Tea Plantations Based on a Wireless Sensor Network
作者 Ying HuangHao Jiang
英文摘要

Suitable soil moisture content (SMC) can not only increase the ability of tea tree roots to absorb and utilize nutrients but also improve the utilization rate of soil nutrients, which can ensure a continuous and stable yield and tea leaf quality. Traditional methods for predicting soil water content generally have low accuracy and efficiency problems. A real-time soil information collection system based on a wireless sensor network was built, and a new predicting SMC Model (AO-SVM) for tea plantations using support vector machine optimized (SVM) by Aquila Optimizer (AO) was constructed and evaluated. The SMC prediction model was established using weather data, soil temperature (ST), soil electrical conductivity (SEC), and PH value (pH), and soil water potential (SWP), and so on. First, the correlation between individual SMC, ST, SEC, pH, SWP was analyzed and parameters with high correlation with soil water content were subsequently identified. The AO-SVM model was utilized to predict the soil moisture content. The experiments showed that the R2 of AO-SVM model proposed in this paper is 0.925. It indicates that the AO-SVM model is effective and feasible and achieves advantageous performance over long short term memory (LSTM), generalized regression neural network (GRNN), the opposition-based chaotic salp swarm algorithm optimized SVM (OCSSA-SVM), sparrow search algorithm optimized SVM (SSA-SVM), particle swarm optimization SVM (PSO-SVM), and the whale algorithm optimized SVM (WOA-SVM) model, which can help guide the irrigation and fertilization management of tea plantations.

 

起訖頁 125-134
關鍵詞 hybrid antennasinternet of thingsprediction modelsoil moisture content
刊名 電腦學刊  
期數 202206 (33:3期)
DOI 10.53106/199115992022063303010  複製DOI
QR Code
該期刊
上一篇
Automatic Detection and Localization of Pulmonary Nodules in CT Images Based on YOLOv5
該期刊
下一篇
Fault Diagnosis under Varying Working Conditions with Domain Adversarial Capsule Networks

高等教育知識庫  閱讀計畫  教育研究月刊  新書優惠  

教師服務
合作出版
期刊徵稿
聯絡高教
高教FB
讀者服務
圖書目錄
教育期刊
訂購服務
活動訊息
數位服務
高等教育知識庫
國際資料庫收錄
投審稿系統
DOI註冊
線上購買
高點網路書店 
元照網路書店
博客來網路書店
教育資源
教育網站
國際教育網站
關於高教
高教簡介
出版授權
合作單位
知識達 知識達 知識達 知識達 知識達 知識達
版權所有‧轉載必究 Copyright2011 高等教育文化事業有限公司  All Rights Reserved
服務信箱:edubook@edubook.com.tw 台北市館前路 26 號 6 樓 Tel:+886-2-23885899 Fax:+886-2-23892500