Embryo Evaluation Based on ResNet with AdaptiveGA-optimized Hyperparameters,ERICDATA高等教育知識庫
高等教育出版
熱門: 謝傳崇  羅文君  葉俊廷  紀金山  簡淑芸  SDGs  
高等教育出版
首頁 臺灣期刊   學校系所   學協會   民間出版   大陸/海外期刊   政府機關   學校系所   學協會   民間出版   DOI註冊服務
篇名
Embryo Evaluation Based on ResNet with AdaptiveGA-optimized Hyperparameters
並列篇名
Embryo Evaluation Based on ResNet with AdaptiveGA-optimized Hyperparameters
作者 Wenju ZhouXiaofei HanYuan XuRongfei ChenZhenbo Zhang
英文摘要

In vitro fertilization (IVF) embryo evaluation based on morphology is an effective method to improve the success rate of transplantation. Although convolutional neural networks (CNNs) have made great achievements in many image classifications, there are still great challenges in accurately classifying embryos due to the insufficient samples, interference of exfoliated cells, and inappropriate hyperparameter configuration in the classification network. In this paper, a residual neural network optimized by the adaptive genetic algorithm is proposed to evaluate embryos. Firstly, a novel algorithm for extracting the region of interest (ROI) is embedded in the preprocessing part of the model to eliminate exfoliated cells close to the embryo. Secondly, several kinds of specific transformation methods are established to expand the dataset based on the symmetry of embryos. In addition, an adaptive genetic algorithm is adopted to search for optimal hyperparameters. Experiments on the data set provided by Shanghai General Hospital show that the algorithm has an excellent performance in embryo evaluation. The accuracy of our model is 86.4%, the recall is 88.4%, and the AUC is 0.93. Our results indicated that the proposed model can effectively improve the classification performance of ResNet, and thus achieve the clinic requirements of embryo evaluation.

 

起訖頁 527-538
關鍵詞 Neural networkEmbryo evaluationGenetic algorithmImage processing
刊名 網際網路技術學刊  
期數 202205 (23:3期)
出版單位 台灣學術網路管理委員會
DOI 10.53106/160792642022052303011  複製DOI
QR Code
該期刊
上一篇
Effect of Facial Shape Information Reflected on Learned Features in Face Spoofing Detection
該期刊
下一篇
Cloud-Based System for Sustainable Stingless Bee Farm

高等教育知識庫  閱讀計畫  教育研究月刊  新書優惠  

教師服務
合作出版
期刊徵稿
聯絡高教
高教FB
讀者服務
圖書目錄
教育期刊
訂購服務
活動訊息
數位服務
高等教育知識庫
國際資料庫收錄
投審稿系統
DOI註冊
線上購買
高點網路書店 
元照網路書店
博客來網路書店
教育資源
教育網站
國際教育網站
關於高教
高教簡介
出版授權
合作單位
知識達 知識達 知識達 知識達 知識達 知識達
版權所有‧轉載必究 Copyright2011 高等教育文化事業有限公司  All Rights Reserved
服務信箱:edubook@edubook.com.tw 台北市館前路 26 號 6 樓 Tel:+886-2-23885899 Fax:+886-2-23892500