Efficient (k, n)-threshold secret sharing method with cheater prevention for QR code application,ERICDATA高等教育知識庫
高等教育出版
熱門: 謝傳崇  羅文君  葉俊廷  紀金山  SDGs  簡淑芸  
高等教育出版
首頁 臺灣期刊   學校系所   學協會   民間出版   大陸/海外期刊   政府機關   學校系所   學協會   民間出版   DOI註冊服務
篇名
Efficient (k, n)-threshold secret sharing method with cheater prevention for QR code application
並列篇名
Efficient (k, n)-threshold secret sharing method with cheater prevention for QR code application
作者 Peng-Cheng HuangChing-Chun ChangYung-Hui Li
英文摘要

To protect secret message, secret sharing technique divides it into n shares and distributes them to n involved participants. However, it is hardly to prevent a dishonest participant to cheat other by providing a fake share. To overcome this weakness, this paper presents an efficient (k, n)-threshold secret sharing approach with the functionality of cheater identification using meaningful QR codes. The secret message would be split into k pieces, and used as the coefficients of polynomial function to generate n shares. These shares would be concealed into cover QR codes based on its fault tolerance to generate meaningful QR code shares. The meaningful QR code shares are helpful to reduce the curiosity of unrelated persons when transmitted in public channel. The legitimacy of QR code share would be verified before secret reconstruction to prevent cheater in secret revealing procedure. Some experiments were done to evaluate the performance of the proposed scheme. The experimental results show that the proposed scheme is efficient, highly secure and highly robust, and it also achieves a higher embedding capacity compared to previous methods.

 

起訖頁 157-165
關鍵詞 Secret sharingQR codeFault toleranceCheater identification
刊名 網際網路技術學刊  
期數 202201 (23:1期)
出版單位 台灣學術網路管理委員會
DOI 10.53106/160792642022012301016  複製DOI
QR Code
該期刊
上一篇
Application of Artificial Intelligence Software based on Semantic Web Technology in English Learning and Teaching
該期刊
下一篇
A Novel Predictor for Exploring PM2.5 Spatiotemporal Propagation by Using Convolutional Recursive Neural Networks

高等教育知識庫  閱讀計畫  教育研究月刊  新書優惠  

教師服務
合作出版
期刊徵稿
聯絡高教
高教FB
讀者服務
圖書目錄
教育期刊
訂購服務
活動訊息
數位服務
高等教育知識庫
國際資料庫收錄
投審稿系統
DOI註冊
線上購買
高點網路書店 
元照網路書店
博客來網路書店
教育資源
教育網站
國際教育網站
關於高教
高教簡介
出版授權
合作單位
知識達 知識達 知識達 知識達 知識達 知識達
版權所有‧轉載必究 Copyright2011 高等教育文化事業有限公司  All Rights Reserved
服務信箱:edubook@edubook.com.tw 台北市館前路 26 號 6 樓 Tel:+886-2-23885899 Fax:+886-2-23892500