A Static Gesture Recognition Method Based on Improved SURF Algorithm and Bayesian Regularization BP Neural Network,ERICDATA高等教育知識庫
高等教育出版
熱門: 謝傳崇  羅文君  葉俊廷  紀金山  SDGs  簡淑芸  
高等教育出版
首頁 臺灣期刊   學校系所   學協會   民間出版   大陸/海外期刊   政府機關   學校系所   學協會   民間出版   DOI註冊服務
閱讀全文
篇名
A Static Gesture Recognition Method Based on Improved SURF Algorithm and Bayesian Regularization BP Neural Network
並列篇名
A Static Gesture Recognition Method Based on Improved SURF Algorithm and Bayesian Regularization BP Neural Network
作者 Hongji XuHaibo Cao
英文摘要
Gesture recognition plays an important role in the aspect of human computer interaction (HCI). It has become one of the most challenging tasks in the pattern recognition field. So far, many gesture representations using two-dimensional image have been proposed, but normally they are vulnerable to environmental factors, such as illumination, cluttered backgrounds and so on. In this paper, we propose a static gesture recognition method based on the improved speed up robust feature (SURF) algorithm and the Bayesian regularization back propagation (BP) neural network with the Microsoft Kinect sensor. With the advantages of the Kinect, we can capture the depth data to enhance the robustness of the proposed algorithm. Gesture analysis can be viewed as a two-fold problem, i.e., gesture representation and classification. On the one hand, we implement gesture segmentation by the depth data, and then extract the feature descriptor of the gesture based on the improved SURF algorithm which is optimized through the key point detection and orientation calculation. On the other hand, the method based on the Bayesian regularization BP neural network is used as classifier. Subsequently, in order to further intensify the recognition accuracy, another method of classification of gestures based on maximum angle between fingers is proposed as well. Finally, two kinds of classification results are also combined to get the final classification result. The experimental results show that the proposed method can eliminate the interference of the background, and enhance the robustness and accuracy of the gesture recognition.
起訖頁 705-712
關鍵詞 Depth dataSpeed up robust featureBack propagation neural networkGesture recognition
刊名 網際網路技術學刊  
期數 202105 (22:3期)
出版單位 台灣學術網路管理委員會
DOI 10.3966/160792642021052203019  複製DOI
QR Code
該期刊
上一篇
Psychological Factors in Consumer Acceptance of Artificial Intelligence in Leisure Economy: A Structural Equation Model
該期刊
下一篇
Research on Underwater Noise Features Based on Spectrum Analysis and Welch Algorithm

高等教育知識庫  閱讀計畫  教育研究月刊  新書優惠  

教師服務
合作出版
期刊徵稿
聯絡高教
高教FB
讀者服務
圖書目錄
教育期刊
訂購服務
活動訊息
數位服務
高等教育知識庫
國際資料庫收錄
投審稿系統
DOI註冊
線上購買
高點網路書店 
元照網路書店
博客來網路書店
教育資源
教育網站
國際教育網站
關於高教
高教簡介
出版授權
合作單位
知識達 知識達 知識達 知識達 知識達 知識達
版權所有‧轉載必究 Copyright2011 高等教育文化事業有限公司  All Rights Reserved
服務信箱:edubook@edubook.com.tw 台北市館前路 26 號 6 樓 Tel:+886-2-23885899 Fax:+886-2-23892500