Black Box Watermarking for DNN Model Integrity Detection Using Label Loss,ERICDATA高等教育知識庫
高等教育出版
熱門: 朱丽彬  黃光男  王美玲  王善边  曾瓊瑤  崔雪娟  
高等教育出版
首頁 臺灣期刊   學校系所   學協會   民間出版   大陸/海外期刊   政府機關   學校系所   學協會   民間出版   DOI註冊服務
篇名
Black Box Watermarking for DNN Model Integrity Detection Using Label Loss
並列篇名
Black Box Watermarking for DNN Model Integrity Detection Using Label Loss
作者 Yunfei SongYujia Zhu劉洋Daoxun Xia
英文摘要

After significant investments of time and resources, the accuracy of deep neural network (DNN) models has reached commercially viable levels, leading to their increasing deployment on cloud platforms for commercial services. However, ongoing research indicates that the challenges facing deep neural network models are continually evolving, particularly with various attacks emerging to compromise their integrity. Deep neural networks are susceptible to poisoning attacks and backdoor attacks, both of which involve malicious fine-tuning of the deep models. Malicious fine-tuning can lead to unpredictable outputs from deep neural network models. Although at-tempts have been made to address this issue, these solutions often increase model complexity or diminish model performance. We propose a black-box watermarking technique based on trigger image sets, which can effectively detect malicious fine-tuning while also enabling copyright authentication. This watermarking technique builds upon black-box watermarking methods, leveraging trig-ger image sets and utilizing a two-stage alternating training approach to fine-tune the model. During training, a novel loss function is employed to optimize the trigger images, thereby embedding the watermark while preserving the model’s original classification capabilities. The proposed watermarking model is highly sensitive to malicious fine-tuning, resulting in unstable classification outcomes for trigger images. Ultimately, by inputting trigger image sets and analyzing the output of the watermarking model, the integrity of the deep neural network model can be verified. Experimental results demonstrate the effectiveness of this approach in detecting the integrity of DNN models.

 

起訖頁 277-290
關鍵詞 deep neural networkwatermarkingtrigger setcopyright protection
刊名 電腦學刊  
期數 202408 (35:4期)
DOI 10.53106/199115992024083504019   複製DOI
QR Code
該期刊
上一篇
Architecture Design of Embedded Software IP Knowledge Base
該期刊
下一篇
Application of Neural Network-based Intelligent Refereeing Technology in Volleyball

高等教育知識庫  新書優惠  教育研究月刊  全球重要資料庫收錄  

教師服務
合作出版
期刊徵稿
聯絡高教
高教FB
讀者服務
圖書目錄
教育期刊
訂購服務
活動訊息
數位服務
高等教育知識庫
國際資料庫收錄
投審稿系統
DOI註冊
線上購買
高點網路書店 
元照網路書店
博客來網路書店
教育資源
教育網站
國際教育網站
關於高教
高教簡介
出版授權
合作單位
知識達 知識達 知識達 知識達 知識達 知識達
版權所有‧轉載必究 Copyright2011 高等教育文化事業股份有限公司  All Rights Reserved
服務信箱:edubook@edubook.com.tw 台北市館前路 26 號 6 樓 Tel:+886-2-23885899 Fax:+886-2-23892500