Attention Mechanism Based Spatial-Temporal Graph Convolution Network for Traffic Prediction,ERICDATA高等教育知識庫
高等教育出版
熱門: 朱丽彬  黃光男  王美玲  王善边  曾瓊瑤  崔雪娟  
高等教育出版
首頁 臺灣期刊   學校系所   學協會   民間出版   大陸/海外期刊   政府機關   學校系所   學協會   民間出版   DOI註冊服務
篇名
Attention Mechanism Based Spatial-Temporal Graph Convolution Network for Traffic Prediction
並列篇名
Attention Mechanism Based Spatial-Temporal Graph Convolution Network for Traffic Prediction
作者 Wenjuan XiaoXiaoming Wang
英文摘要

Considering the complexity of traffic systems and the challenges brought by various factors in traffic prediction, we propose a spatial-temporal graph convolutional neural network based on attention mechanism (AMSTGCN) to adapt to these dynamic changes and improve prediction accuracy. The model combines the spatial feature extraction capability of graph attention network (GAT) and the dynamic correlation learning capability of attention mechanism. By introducing the attention mechanism, the network can adaptively focus on the dependencies between different time steps and different nodes, effectively mining the dynamic spatial-temporal relationships in the traffic data. Specifically, we adopt an improved version of graph attention network (GAT_v2) in the spatial dimension, which allows the model to capture more complex dynamic spatial correlations. Furthermore, in the temporal dimension, we combine gated recurrent unit (GRU) structure with an attention mechanism to enhance the model’s ability to process sequential data and predict traffic flow changes over prolonged periods. To validate the effectiveness of the proposed method, extensive experiments were conducted on public traffic datasets, where AMSTGCN was compared with five different benchmark models. Experimental results demonstrate that AMSTGCN exhibits superior performance on both short-term and long-term prediction tasks and outperforms other models on multiple evaluation metrics, validating its potential and practical value in the field of traffic prediction.

 

起訖頁 093-108
關鍵詞 transportation systemattention mechanismdynamic changespatial-temporal dependency
刊名 電腦學刊  
期數 202408 (35:4期)
DOI 10.53106/199115992024083504007   複製DOI
QR Code
該期刊
上一篇
STSB Model Based on STL Decomposition Algorithm and Its Application in Stock Price Prediction Studies
該期刊
下一篇
Combined Knowledge Distillation Framework: Breaking Down Knowledge Barriers

高等教育知識庫  新書優惠  教育研究月刊  全球重要資料庫收錄  

教師服務
合作出版
期刊徵稿
聯絡高教
高教FB
讀者服務
圖書目錄
教育期刊
訂購服務
活動訊息
數位服務
高等教育知識庫
國際資料庫收錄
投審稿系統
DOI註冊
線上購買
高點網路書店 
元照網路書店
博客來網路書店
教育資源
教育網站
國際教育網站
關於高教
高教簡介
出版授權
合作單位
知識達 知識達 知識達 知識達 知識達 知識達
版權所有‧轉載必究 Copyright2011 高等教育文化事業股份有限公司  All Rights Reserved
服務信箱:edubook@edubook.com.tw 台北市館前路 26 號 6 樓 Tel:+886-2-23885899 Fax:+886-2-23892500