Classification of Ice Crystal Images from Airborne Cloud Particle Imager Probe (CPI) Using Convolutional Neural Networks (CNN),ERICDATA高等教育知識庫
高等教育出版
熱門: 朱丽彬  黃光男  王美玲  王善边  曾瓊瑤  崔雪娟  
高等教育出版
首頁 臺灣期刊   學校系所   學協會   民間出版   大陸/海外期刊   政府機關   學校系所   學協會   民間出版   DOI註冊服務
篇名
Classification of Ice Crystal Images from Airborne Cloud Particle Imager Probe (CPI) Using Convolutional Neural Networks (CNN)
並列篇名
Classification of Ice Crystal Images from Airborne Cloud Particle Imager Probe (CPI) Using Convolutional Neural Networks (CNN)
作者 Ye-Feng XuRui-Li JiaoMin-Song Huang
英文摘要

Ice crystals in clouds have various shapes, which play a crucial role in understanding the development of precipitation, climate change and remote sensing retrievals. The copious ice crystal images collected by the airborne cloud particle imager probe (CPI) following each research flight impede efficient human identification, prompting the necessity for an automated, high-precision algorithm to classify ice crystal habits. Traditional automatic classification methods require manual feature extraction for a good performance, which affects their generalization ability. Instead, the recently perfected machine learning method -- convolutional neural network (CNN) holds promise in addressing this issue. In this paper, the ice crystal images observed by CPI are used to set up an ice crystal dataset, which consists of eleven shapes containing 5,342 images. Additionally, a method to identify ice particle shape based on CNN is presented. The small 3×3 convolutional kernels are used to construct a 30-layer CNN model to achieve automatic habit classification of ice crystal particle shapes. The CNN model is compared with traditional machine learning models (SVM, BP) using the created dataset. The CNN model achieved the highest F1 score for each category and an accuracy of 95.45%. Experimental results show that ice crystal classification using CNN is an effective and feasible method, surpassing traditional classification methods that require manual feature extraction. This research provides a reference value for cloud microphysics research.

 

起訖頁 159-174
關鍵詞 ice crystal habitsCloud Particle Imager (CPI)convolutional neural networks (CNN)cloud microphysics researchdeep learning
刊名 電腦學刊  
期數 202406 (35:3期)
DOI 10.53106/199115992024063503012   複製DOI
QR Code
該期刊
上一篇
Finite Element Analysis and Simulation Research on Body Welding Hole Shape and Welding Optimization for Automotive Lightweighting
該期刊
下一篇
DETRs with Dynamic Contrastive Denoising Training for Smartphone Assembly Parts

高等教育知識庫  新書優惠  教育研究月刊  全球重要資料庫收錄  

教師服務
合作出版
期刊徵稿
聯絡高教
高教FB
讀者服務
圖書目錄
教育期刊
訂購服務
活動訊息
數位服務
高等教育知識庫
國際資料庫收錄
投審稿系統
DOI註冊
線上購買
高點網路書店 
元照網路書店
博客來網路書店
教育資源
教育網站
國際教育網站
關於高教
高教簡介
出版授權
合作單位
知識達 知識達 知識達 知識達 知識達 知識達
版權所有‧轉載必究 Copyright2011 高等教育文化事業股份有限公司  All Rights Reserved
服務信箱:edubook@edubook.com.tw 台北市館前路 26 號 6 樓 Tel:+886-2-23885899 Fax:+886-2-23892500