Improving Unsupervised Domain Adaptation via Multiple Adversarial Learning,ERICDATA高等教育知識庫
高等教育出版
熱門: 朱丽彬  黃光男  王美玲  王善边  曾瓊瑤  崔雪娟  
高等教育出版
首頁 臺灣期刊   學校系所   學協會   民間出版   大陸/海外期刊   政府機關   學校系所   學協會   民間出版   DOI註冊服務
篇名
Improving Unsupervised Domain Adaptation via Multiple Adversarial Learning
並列篇名
Improving Unsupervised Domain Adaptation via Multiple Adversarial Learning
作者 Yu-Dong CaoShuang-Jiang HangXu Jia
英文摘要

Most machine learning methods assume the training and test sets to be independent and have identical distributions. However, this assumption does not always hold true in practical applications. Direct training usually induces poor performance if the training and test data have distribution shifts. To address this issue, a three-part model based on using a feature extractor, a classifier, and several domain discriminators is adopted herein. This unsupervised domain adaptation model is based on multiple adversarial learning with samples of different importance. A deep neural network is used for supervised classification learning of the source domain. Numerous adversarial networks are used to constitute the domain discriminators to align each category in the source and target domains and effectively transfer knowledge from the source domain to the target domain. Triplet loss functions—classification loss, label credibility loss, and discrimination loss—are presented to further optimize the model parameters. First, the label similarity metric is designed between the target and source domains data. Second, a credibility loss function is proposed to obtain an accurate label for the unlabeled data of the target domain under training iterations. Finally, a discrimination loss is designed for multiple adversarial domain discriminators to fully utilize the unlabeled data in the target domain during training. The discrimination loss function uses predicted label probabilities as dynamic weights for the train data. The proposed method is compared with mainstream domain adaptation approaches on four public datasets: Office-31, MNIST, USPS, and SVHN. Experimental results show that the proposed method can perform well in the target domain and improve generalization performance of the model.

 

起訖頁 073-085
關鍵詞 domain adaptationtransfer learningdeep neural networkadversarial learningloss function
刊名 電腦學刊  
期數 202310 (34:5期)
DOI 10.53106/199115992023103405006   複製DOI
QR Code
該期刊
上一篇
A New Comprehensive Algorithm for the Cutting and Packing Problem with Position Constraints
該期刊
下一篇
Remote Sensing Image Super-Resolution Using Texture Enhancing Generative Adversarial Network

高等教育知識庫  新書優惠  教育研究月刊  全球重要資料庫收錄  

教師服務
合作出版
期刊徵稿
聯絡高教
高教FB
讀者服務
圖書目錄
教育期刊
訂購服務
活動訊息
數位服務
高等教育知識庫
國際資料庫收錄
投審稿系統
DOI註冊
線上購買
高點網路書店 
元照網路書店
博客來網路書店
教育資源
教育網站
國際教育網站
關於高教
高教簡介
出版授權
合作單位
知識達 知識達 知識達 知識達 知識達 知識達
版權所有‧轉載必究 Copyright2011 高等教育文化事業股份有限公司  All Rights Reserved
服務信箱:edubook@edubook.com.tw 台北市館前路 26 號 6 樓 Tel:+886-2-23885899 Fax:+886-2-23892500