Support Vector Machine based Automatic Classification Method for IoT big Data Features,ERICDATA高等教育知識庫
高等教育出版
熱門: 朱丽彬  黃光男  王美玲  王善边  曾瓊瑤  崔雪娟  
高等教育出版
首頁 臺灣期刊   學校系所   學協會   民間出版   大陸/海外期刊   政府機關   學校系所   學協會   民間出版   DOI註冊服務
篇名
Support Vector Machine based Automatic Classification Method for IoT big Data Features
並列篇名
Support Vector Machine based Automatic Classification Method for IoT big Data Features
作者 Yong-Hua Xu
英文摘要

As China’s information technology development shifts from a single high-speed growth stage to a multidimensional high-quality development stage, the Internet of Things (IoT) enters all aspects of life and becomes more and more popular. The demand for IoT big data information analysis and processing is increasing, and the important role of feature automatic classification methods becomes increasingly prominent. This research proposes SPO-SVM and WSPO-SVM models based on support vector machine for smart home environment monitoring data under the big data of Internet of Things, and then optimizes them with particle swarm optimization algorithm and adaptive method. Finally, the data set is selected for comparative experimental analysis of each optimization algorithm model. The experimental results show that the optimized WSPO-SVM model has less total misclassification and single class misclassification compared with other algorithms under Wine dataset. In cross-validation, both its classification accuracy performance outperformed other algorithms. Under 10 sets of smart home environment monitoring data sets, the WSPO-SVM algorithm model achieves 100% accuracy in 6 out of 10 test data sets, with an average accuracy of 97.67%, which is about 9% higher than the ordinary SVM algorithm model and about 15% higher than other feature classification algorithms. The experimental results prove that the WSPO-SVM algorithm can complete the feature classification work in the IoT big data environment, which meets the expectation.

 

起訖頁 015-027
關鍵詞 internet of thingsSVMSPOfeature classification algorithm
刊名 電腦學刊  
期數 202310 (34:5期)
DOI 10.53106/199115992023103405002   複製DOI
QR Code
該期刊
上一篇
Reconstruction of Communication Signal in Wireless Networks Based on Perturbation Compression Perception
該期刊
下一篇
Research on Intelligent Operation and Maintenance (O&M) Method of Complex Products based on Digital Twin

高等教育知識庫  新書優惠  教育研究月刊  全球重要資料庫收錄  

教師服務
合作出版
期刊徵稿
聯絡高教
高教FB
讀者服務
圖書目錄
教育期刊
訂購服務
活動訊息
數位服務
高等教育知識庫
國際資料庫收錄
投審稿系統
DOI註冊
線上購買
高點網路書店 
元照網路書店
博客來網路書店
教育資源
教育網站
國際教育網站
關於高教
高教簡介
出版授權
合作單位
知識達 知識達 知識達 知識達 知識達 知識達
版權所有‧轉載必究 Copyright2011 高等教育文化事業股份有限公司  All Rights Reserved
服務信箱:edubook@edubook.com.tw 台北市館前路 26 號 6 樓 Tel:+886-2-23885899 Fax:+886-2-23892500