Deep Learning-Based Self-Admitted Technical Debt Detection Empirical Research,ERICDATA高等教育知識庫
高等教育出版
熱門: 朱丽彬  黃光男  王美玲  王善边  曾瓊瑤  崔雪娟  
高等教育出版
首頁 臺灣期刊   學校系所   學協會   民間出版   大陸/海外期刊   政府機關   學校系所   學協會   民間出版   DOI註冊服務
篇名
Deep Learning-Based Self-Admitted Technical Debt Detection Empirical Research
並列篇名
Deep Learning-Based Self-Admitted Technical Debt Detection Empirical Research
作者 Yubin QuTie BaoMeng YuanLong Li
英文摘要

Self-Admitted Technical Debt (SATD) is a workaround for current gains and subsequent software quality in software comments. Some studies have been conducted using NLP-based techniques or CNN-based classifiers. However, there exists a class imbalance problem in different software projects since the software code comments with SATD features are significantly less than those without Non-SATD. Therefore, to design a classification model with the ability of dealing with this class imbalance problem is necessary for SATD detection. We propose an improved loss function based on information entropy. Our proposed function is studied in a variety of application scenarios. Empirical research on 10 JAVA software projects is conducted to show the competitiveness of our new approach. We find our proposed approach can perform significantly better than state-of-the-art baselines.

 

起訖頁 975-987
關鍵詞 Deep learningConvolutional neural networkLong short-term memoryLoss functionClass imbalance
刊名 網際網路技術學刊  
期數 202307 (24:4期)
出版單位 台灣學術網路管理委員會
DOI 10.53106/160792642023072404015   複製DOI
QR Code
該期刊
上一篇
G-DCS: GCN-Based Deep Code Summary Generation Model
該期刊
下一篇
Avoiding Optimal Mean Robust and Sparse BPCA with L1-norm Maximization

高等教育知識庫  新書優惠  教育研究月刊  全球重要資料庫收錄  

教師服務
合作出版
期刊徵稿
聯絡高教
高教FB
讀者服務
圖書目錄
教育期刊
訂購服務
活動訊息
數位服務
高等教育知識庫
國際資料庫收錄
投審稿系統
DOI註冊
線上購買
高點網路書店 
元照網路書店
博客來網路書店
教育資源
教育網站
國際教育網站
關於高教
高教簡介
出版授權
合作單位
知識達 知識達 知識達 知識達 知識達 知識達
版權所有‧轉載必究 Copyright2011 高等教育文化事業股份有限公司  All Rights Reserved
服務信箱:edubook@edubook.com.tw 台北市館前路 26 號 6 樓 Tel:+886-2-23885899 Fax:+886-2-23892500