Predicting Temperature-induced Deflection and Abnormality Recognition of Cable-stayed Bridge Based on Machine Learning,ERICDATA高等教育知識庫
高等教育出版
熱門: 朱丽彬  黃光男  王美玲  王善边  曾瓊瑤  崔雪娟  
高等教育出版
首頁 臺灣期刊   學校系所   學協會   民間出版   大陸/海外期刊   政府機關   學校系所   學協會   民間出版   DOI註冊服務
篇名
Predicting Temperature-induced Deflection and Abnormality Recognition of Cable-stayed Bridge Based on Machine Learning
並列篇名
Predicting Temperature-induced Deflection and Abnormality Recognition of Cable-stayed Bridge Based on Machine Learning
作者 Shou-Wang SunZhi-Wen WangYou-Liang DingZi-Xiang Yue
英文摘要

The vertical deflection of the main girder on a cable-stayed bridge is a direct reflection of the vertical stiffness of bridge structure, which represents the comprehensive mechanical performance of cable-stayed bridge. Compared with the deflection caused by vehicles, the deflection caused by temperature is often more significant and the change frequency is very low, which is easy to extract from raw data, and can be used as an index to evaluate the state of cable-stayed bridge. To obtain the control value for recognizing the abnormal deflection, it is necessary to establish an accurate input-output relationship between temperature and temperature-induced deflection. However, because of the high-order nonlinear relationship between the temperature and the temperature-induced deflection, the traditional linear regression is not accurate enough in modeling this relationship. To establish a high-precision model for the deflection, this paper uses the machine learning tools with the highly nonlinear fitting performance to further model the project. Considering both the precision and modeling efficiency, the Long-Short Term Memory (LSTM) network can build the optimal model between temperature and temperature-induced deflection. Use the regression value output by LSTM as the control value combining with the statistical pattern of t-test, the 6% abnormal deflection can be recognized. The 6% sensitivity can help to recognize bridge abnormalities earlier.

 

起訖頁 037-050
關鍵詞 structural health monitoringcable-stayed bridgetemperature-induced deflectionmachine learningLSTM model
刊名 電腦學刊  
期數 202212 (33:6期)
DOI 10.53106/199115992022123306003   複製DOI
QR Code
該期刊
上一篇
An Non-Intrusive Load Event Detection Approach Based on CEEMDAN-WTD-F Test
該期刊
下一篇
Operator Hardware Realization using FPGA: CMAC Implementation as an Example

高等教育知識庫  新書優惠  教育研究月刊  全球重要資料庫收錄  

教師服務
合作出版
期刊徵稿
聯絡高教
高教FB
讀者服務
圖書目錄
教育期刊
訂購服務
活動訊息
數位服務
高等教育知識庫
國際資料庫收錄
投審稿系統
DOI註冊
線上購買
高點網路書店 
元照網路書店
博客來網路書店
教育資源
教育網站
國際教育網站
關於高教
高教簡介
出版授權
合作單位
知識達 知識達 知識達 知識達 知識達 知識達
版權所有‧轉載必究 Copyright2011 高等教育文化事業股份有限公司  All Rights Reserved
服務信箱:edubook@edubook.com.tw 台北市館前路 26 號 6 樓 Tel:+886-2-23885899 Fax:+886-2-23892500