Depression Detection in Social Media using XLNet with Topic Distributions,ERICDATA高等教育知識庫
高等教育出版
熱門: 朱丽彬  黃光男  王美玲  王善边  曾瓊瑤  崔雪娟  
高等教育出版
首頁 臺灣期刊   學校系所   學協會   民間出版   大陸/海外期刊   政府機關   學校系所   學協會   民間出版   DOI註冊服務
篇名
Depression Detection in Social Media using XLNet with Topic Distributions
並列篇名
Depression Detection in Social Media using XLNet with Topic Distributions
作者 Wang GaoBaoping YangYuwei WangYuan Fang
英文摘要

Due to the complexity of depressive diseases, detecting depressed users on social media platforms is a challenging task. In recent years, with an increasing number of users of social media sites, this field of re-search has begun to develop rapidly. To improve the detection performance of traditional methods, two challenges need to be overcome. The first challenge is that textual content posted on social media plat-forms suffers from serious data sparseness. The second one is how to effectively use emotions, user in-formation, and behavior characteristics to predict potentially depressed users. In this paper, we propose a novel model called the Topic-enriched Depression Detection Model (TDDM), which combines topic in-formation and user behavior to predict depressed users on social media platforms. TDDM first employs a Conditional Random Field Regularized Topic Model (CRFTM) to extract the topic knowledge of user posts. XLNet is used to encode posts to further expand the semantic features of short texts. Finally, we integrate user behavior features into TDDM to improve the detection performance of the model. The ex-perimental results on a real-world Twitter dataset demonstrate that the proposed model performs better than baseline models in detecting depressed users at both pseudo-document level and user level.

 

起訖頁 095-106
關鍵詞 depression detectionXLNettopic modelBiLSTM
刊名 電腦學刊  
期數 202208 (33:4期)
DOI 10.53106/199115992022083304008   複製DOI
QR Code
該期刊
上一篇
The Configuration Design of Electronic Products Based on improved NSGA-III with Information Feedback Models
該期刊
下一篇
A Discrete Particle Swarm Optimization Algorithm Based on Neighbor Cognition to Solve the Problem of Social Influence Maximization

高等教育知識庫  新書優惠  教育研究月刊  全球重要資料庫收錄  

教師服務
合作出版
期刊徵稿
聯絡高教
高教FB
讀者服務
圖書目錄
教育期刊
訂購服務
活動訊息
數位服務
高等教育知識庫
國際資料庫收錄
投審稿系統
DOI註冊
線上購買
高點網路書店 
元照網路書店
博客來網路書店
教育資源
教育網站
國際教育網站
關於高教
高教簡介
出版授權
合作單位
知識達 知識達 知識達 知識達 知識達 知識達
版權所有‧轉載必究 Copyright2011 高等教育文化事業股份有限公司  All Rights Reserved
服務信箱:edubook@edubook.com.tw 台北市館前路 26 號 6 樓 Tel:+886-2-23885899 Fax:+886-2-23892500