A Complexity-Reducing HEVC Intra-Mode Method Based on VGGNet,ERICDATA高等教育知識庫
高等教育出版
熱門: 朱丽彬  黃光男  王美玲  王善边  曾瓊瑤  崔雪娟  
高等教育出版
首頁 臺灣期刊   學校系所   學協會   民間出版   大陸/海外期刊   政府機關   學校系所   學協會   民間出版   DOI註冊服務
篇名
A Complexity-Reducing HEVC Intra-Mode Method Based on VGGNet
並列篇名
A Complexity-Reducing HEVC Intra-Mode Method Based on VGGNet
作者 Li-Ming QinZhong-Jie ZhuYong-Qiang BaiGuang-Long LiaoTing-Na Liu
英文摘要

High-efficiency video coding (HEVC) has improved the coding performance by 50% compared with the previous H.264 coding standard. However, it has also introduced an extremely high coding complexity. The quad-tree partition used by the coding unit (CU) is one of the key factors leading to the increase in complexity. Therefore, this paper proposes a CU partition method based on a convolutional neural net-work (CNN). Aiming at the complex recursive calculation of CU partition, an improved VGGNet network structure is proposed to replace the brute-force search strategy, which effectively reduces the computa-tional complexity of intra frame coding. Finally, to enhance the effectiveness of the network model in this paper, the feature pyramid network is added to the CNN model to improve the accuracy of feature extraction. The experimental results show that the proposed method can reduce the intra coding time by 59.71% while maintaining the coding performance.

 

起訖頁 057-067
關鍵詞 video codingintra predictiondeep learningconvolutional neural network
刊名 電腦學刊  
期數 202208 (33:4期)
DOI 10.53106/199115992022083304005   複製DOI
QR Code
該期刊
上一篇
Method for Detection of Ripe Navel Orange Fruit on Trees in Various Weather
該期刊
下一篇
YOLO-Based Efficient Vehicle Object Detection

高等教育知識庫  新書優惠  教育研究月刊  全球重要資料庫收錄  

教師服務
合作出版
期刊徵稿
聯絡高教
高教FB
讀者服務
圖書目錄
教育期刊
訂購服務
活動訊息
數位服務
高等教育知識庫
國際資料庫收錄
投審稿系統
DOI註冊
線上購買
高點網路書店 
元照網路書店
博客來網路書店
教育資源
教育網站
國際教育網站
關於高教
高教簡介
出版授權
合作單位
知識達 知識達 知識達 知識達 知識達 知識達
版權所有‧轉載必究 Copyright2011 高等教育文化事業股份有限公司  All Rights Reserved
服務信箱:edubook@edubook.com.tw 台北市館前路 26 號 6 樓 Tel:+886-2-23885899 Fax:+886-2-23892500