Exploring Unsupervised Learning with Clustering and Deep Autoencoder to Detect DDoS Attack,ERICDATA高等教育知識庫
高等教育出版
熱門: 朱丽彬  黃光男  王美玲  王善边  曾瓊瑤  崔雪娟  
高等教育出版
首頁 臺灣期刊   學校系所   學協會   民間出版   大陸/海外期刊   政府機關   學校系所   學協會   民間出版   DOI註冊服務
篇名
Exploring Unsupervised Learning with Clustering and Deep Autoencoder to Detect DDoS Attack
並列篇名
Exploring Unsupervised Learning with Clustering and Deep Autoencoder to Detect DDoS Attack
作者 Xuejun ZhangJiyang GaiZhili MaJinxiong ZhaoHongzhong MaFucun HeTao Ju
英文摘要

With the proliferation of services available on the Internet, network attacks have become one of the seri-ous issues. The distributed denial of service (DDoS) attack is such a devastating attack, which poses an enormous threat to network communication and applications and easily disrupts services. To defense against DDoS attacks effectively, this paper proposes a novel DDoS attack detection method that trains detection models in an unsupervised learning manner using preprocessed and unlabeled normal network traffic data, which can not only avoid the impact of unbalanced training data on the detection model per-formance but also detect unknown attacks. Specifically, the proposed method firstly uses Balanced Itera-tive Reducing and Clustering Using Hierarchies algorithm (BIRCH) to pre-cluster the normal network traf-fic data, and then explores autoencoder (AE) to build the detection model in an unsupervised manner based on the cluster subsets. In order to verify the performance of our method, we perform experiments on benchmark network intrusion detection datasets KDDCUP99 and UNSWNB15. The results show that, compared with the state-of-the-art DDoS detection models that used supervised learning and unsuper-vised learning, our proposed method achieves better performance in terms of detection accuracy rate and false positive rate (FPR).

 

起訖頁 029-044
關鍵詞 DDoS attack detectionautoencoderclustering algorithmunsupervised learning
刊名 電腦學刊  
期數 202208 (33:4期)
DOI 10.53106/199115992022083304003   複製DOI
QR Code
該期刊
上一篇
Data Analysis of Amazon Product Based on LSTM and GPR
該期刊
下一篇
Method for Detection of Ripe Navel Orange Fruit on Trees in Various Weather

高等教育知識庫  新書優惠  教育研究月刊  全球重要資料庫收錄  

教師服務
合作出版
期刊徵稿
聯絡高教
高教FB
讀者服務
圖書目錄
教育期刊
訂購服務
活動訊息
數位服務
高等教育知識庫
國際資料庫收錄
投審稿系統
DOI註冊
線上購買
高點網路書店 
元照網路書店
博客來網路書店
教育資源
教育網站
國際教育網站
關於高教
高教簡介
出版授權
合作單位
知識達 知識達 知識達 知識達 知識達 知識達
版權所有‧轉載必究 Copyright2011 高等教育文化事業股份有限公司  All Rights Reserved
服務信箱:edubook@edubook.com.tw 台北市館前路 26 號 6 樓 Tel:+886-2-23885899 Fax:+886-2-23892500