A Method for Detecting Abnormal Data of Network Nodes Based on Convolutional Neural Network,ERICDATA高等教育知識庫
高等教育出版
熱門: 朱丽彬  黃光男  王美玲  王善边  曾瓊瑤  崔雪娟  
高等教育出版
首頁 臺灣期刊   學校系所   學協會   民間出版   大陸/海外期刊   政府機關   學校系所   學協會   民間出版   DOI註冊服務
篇名
A Method for Detecting Abnormal Data of Network Nodes Based on Convolutional Neural Network
並列篇名
A Method for Detecting Abnormal Data of Network Nodes Based on Convolutional Neural Network
作者 Xianhao ShenChanghong  ZhuYihao ZangShaohua Niu
英文摘要

Abnormal data detection is an important step to ensure the accuracy and reliability of node data in wireless sensor networks. In this paper, a data classification method based on convolutional neural network is proposed to solve the problem of data anomaly detection in wireless sensor networks. First, Normal data and abnormal data generated after injection fault are normalized and mapped to gray image as input data of the convolutional neural network. Then, based on the classical convolution neural network, three new convolutional neural network models are designed by designing the parameters of the convolutional layer and the fully connected layer. This model solves the problem that the performance of traditional detection algorithm is easily affected by relevant threshold through self-learning data characteristics of convolution layer. The experimental results show that this method has better detection performance and higher reliability.

 

起訖頁 049-058
關鍵詞 data anomaly detectionconvolutional neural networkinjection faultnormal
刊名 電腦學刊  
期數 202206 (33:3期)
DOI 10.53106/199115992022063303004   複製DOI
QR Code
該期刊
上一篇
Prediction of Academic Formulaic Language based on Multi-feature Fusion
該期刊
下一篇
Stall Warning Algorithm of Axial Compressor Based on SSA-DBN

高等教育知識庫  新書優惠  教育研究月刊  全球重要資料庫收錄  

教師服務
合作出版
期刊徵稿
聯絡高教
高教FB
讀者服務
圖書目錄
教育期刊
訂購服務
活動訊息
數位服務
高等教育知識庫
國際資料庫收錄
投審稿系統
DOI註冊
線上購買
高點網路書店 
元照網路書店
博客來網路書店
教育資源
教育網站
國際教育網站
關於高教
高教簡介
出版授權
合作單位
知識達 知識達 知識達 知識達 知識達 知識達
版權所有‧轉載必究 Copyright2011 高等教育文化事業股份有限公司  All Rights Reserved
服務信箱:edubook@edubook.com.tw 台北市館前路 26 號 6 樓 Tel:+886-2-23885899 Fax:+886-2-23892500