Design and Implementation of Road Traffic Responsibility Identification System based on Semantic Understanding and Similar Cases,ERICDATA高等教育知識庫
高等教育出版
熱門: 朱丽彬  黃光男  王美玲  王善边  曾瓊瑤  崔雪娟  
高等教育出版
首頁 臺灣期刊   學校系所   學協會   民間出版   大陸/海外期刊   政府機關   學校系所   學協會   民間出版   DOI註冊服務
閱讀全文
篇名
Design and Implementation of Road Traffic Responsibility Identification System based on Semantic Understanding and Similar Cases
並列篇名
Design and Implementation of Road Traffic Responsibility Identification System based on Semantic Understanding and Similar Cases
作者 Hongde ZhouZhenjiang ZhangNayue ChenYinglong LiRuiheng Zhao
英文摘要

The deep integration of deep learning and the judicial field has led to the continuous development of judicial intelligence. Judicial intelligence can not only assist judicial practitioners to improve their work efficiency, but also better serve the public and promote judicial convenience. Liability determination is the main basic task of judicial intelligence, but with the increase in the number of cases, staff will spend a lot of time dealing with similar cases, reducing work efficiency and consuming energy, so this paper combines natural language processing technology, Recommendation strategy and deep learning, research and implement a road traffic responsibility identification system based on semantic understanding and similar cases. To a certain extent, it can assist sentencing decision-making and standardize judgment standards. This paper firstly studies and analyzes related technologies, then identifies similar cases, uses triples to extract text keywords, and then uses gensim library and text2vec library to calculate text similarity, and then uses D-S evidence theory to compare the above two methods. The fusion of the similarity calculation results, and combined with the road traffic responsibility identification system for application, in which the main function of the evidence theory is to complete the similar case recommendation and similarity calculation through the case description. The establishment of a road traffic responsibility identification system has the important value of improving the predictability of judicial activities and realizing formal and substantive justice.

 

起訖頁 211-219
關鍵詞 judicial intelligencesimilar case retrievalresponsibility determinationdeep learning
刊名 電腦學刊  
期數 202204 (33:2期)
DOI 10.53106/199115992022043302019   複製DOI
QR Code
該期刊
上一篇
Density Space Clustering Algorithm Based on Users Behaviors

高等教育知識庫  新書優惠  教育研究月刊  全球重要資料庫收錄  

教師服務
合作出版
期刊徵稿
聯絡高教
高教FB
讀者服務
圖書目錄
教育期刊
訂購服務
活動訊息
數位服務
高等教育知識庫
國際資料庫收錄
投審稿系統
DOI註冊
線上購買
高點網路書店 
元照網路書店
博客來網路書店
教育資源
教育網站
國際教育網站
關於高教
高教簡介
出版授權
合作單位
知識達 知識達 知識達 知識達 知識達 知識達
版權所有‧轉載必究 Copyright2011 高等教育文化事業股份有限公司  All Rights Reserved
服務信箱:edubook@edubook.com.tw 台北市館前路 26 號 6 樓 Tel:+886-2-23885899 Fax:+886-2-23892500