Unsupervised Learning of Depth and Ego-Motion from Continuous Monocular Images,ERICDATA高等教育知識庫
高等教育出版
熱門: 朱丽彬  黃光男  王美玲  王善边  曾瓊瑤  崔雪娟  
高等教育出版
首頁 臺灣期刊   學校系所   學協會   民間出版   大陸/海外期刊   政府機關   學校系所   學協會   民間出版   DOI註冊服務
閱讀全文
篇名
Unsupervised Learning of Depth and Ego-Motion from Continuous Monocular Images
並列篇名
Unsupervised Learning of Depth and Ego-Motion from Continuous Monocular Images
作者 Zhuo WangMin HuangXiao-Long HuangFei ManJia-Ming DouJian-li Lyu
英文摘要
In this study, the task of estimating depth is explored and also estimates continuous monocular images and optimizing and comparing two uncontrolled neural network structures namely DispNet and DispResNet, to determine a network structure that is more optimal. Photometric loss, minimal photometric loss, mask loss and smoothness loss are all components of loss functions for training depth and pose estimation neural networks. For the computation of photometric loss error caused through object motion and object occlusion on continuous images, a minimum photometric loss calculation method is proposed: the minimum value of photometric loss for each pixel point is taken, and then the mean value is computed as the minimum photometric loss, which minimizes the calculation error caused by occlusion, as well as other factors. The KITTI dataset assessment demonstrate that: the whole seven assessment parameters of depth estimation attain optimum value. Moreover, we show that our ego-motion network is able to predict camera tracks on long sequences of videos more closely than other algorithms.
起訖頁 038-051
關鍵詞 unsupervised learningmonocular image informationdepth estimationCNN
刊名 電腦學刊  
期數 202112 (32:6期)
DOI 10.53106/199115992021123206004   複製DOI
QR Code
該期刊
上一篇
Human Activity Recognition with Multimodal Sensing of Wearable Sensors
該期刊
下一篇
Infrared And Visible Image Fusion Based on Rolling Guidance Filter Combined with Convolutional Neural Network

高等教育知識庫  新書優惠  教育研究月刊  全球重要資料庫收錄  

教師服務
合作出版
期刊徵稿
聯絡高教
高教FB
讀者服務
圖書目錄
教育期刊
訂購服務
活動訊息
數位服務
高等教育知識庫
國際資料庫收錄
投審稿系統
DOI註冊
線上購買
高點網路書店 
元照網路書店
博客來網路書店
教育資源
教育網站
國際教育網站
關於高教
高教簡介
出版授權
合作單位
知識達 知識達 知識達 知識達 知識達 知識達
版權所有‧轉載必究 Copyright2011 高等教育文化事業股份有限公司  All Rights Reserved
服務信箱:edubook@edubook.com.tw 台北市館前路 26 號 6 樓 Tel:+886-2-23885899 Fax:+886-2-23892500