A Supervised Named Entity Recognition Method Based on Pattern Matching and Semantic Verification,ERICDATA高等教育知識庫
高等教育出版
熱門: 王希哲  正念  吳清山  趙珮晴  方德隆  曾榮祥  
高等教育出版
首頁 臺灣期刊   學校系所   學協會   民間出版   大陸/海外期刊   政府機關   學校系所   學協會   民間出版   DOI註冊服務
閱讀全文
篇名
A Supervised Named Entity Recognition Method Based on Pattern Matching and Semantic Verification
並列篇名
A Supervised Named Entity Recognition Method Based on Pattern Matching and Semantic Verification
作者 Nan GaoZhenyang ZhuZhengqiu WengGuolang ChenMin Zhang
英文摘要
Named entity recognition is a basic task in the field of natural language processing and plays a pivotal role in tasks such as information extraction, machine translation, and knowledge graph construction. It has also received widespread attention in financial, biological and pharmaceutical industries. This paper proposes a method of weakly supervised learning to recognize the complex named entities (commonly composed of multiple small entity sequences, hereinafter referred to as CNEs) in the corpus, which makes it difficult to determine the boundaries of such entities. To improve the recognition accuracy, our method Masked-BiLSTM-CRF is proposed to separate the context semantic relationship determination from the entity boundary confirmation. This method is based on two aspects to solve the above problems: (1) Semantic model based on CNEs mask processing. Before training, the CNEs in the corpus will be masked, and then use the masked corpus training the semantic model through BiLSTM-CRF, which can verify whether the context semantics of the corresponding location entities are correct. (2) A weakly supervised CNEs boundary confirmation model based on sequential patterns. In the small sample data set, the target CNE candidate set is found by sliding window combined with sequence pattern matching, and then it is effectively screened and judged by the semantic understanding model obtained in (1). The experimental results show that compared with the named entity recognition method based directly on BiLSTMCRF on the weakly-supervised named entity recognition in financial field, our proposed method improves F1- Score in the small data training sample set by nearly 9%, and it has some generalization ability.
起訖頁 1917-1928
關鍵詞 Named entity recognitionWeakly supervised learningDeep learningPattern matching
刊名 網際網路技術學刊  
期數 202012 (21:7期)
出版單位 台灣學術網路管理委員會
DOI 10.3966/160792642020122107006  複製DOI
QR Code
該期刊
上一篇
Image Uploading for Safe Driving Applications in Vehicular Networks Based on Mobile Edge Computing Technologies
該期刊
下一篇
Efficient MQTT Platform Facilitating Secure Group Communication

高等教育知識庫  閱讀計畫  教育研究月刊  新書優惠  

教師服務
合作出版
期刊徵稿
聯絡高教
高教FB
讀者服務
圖書目錄
教育期刊
訂購服務
活動訊息
數位服務
高等教育知識庫
國際資料庫收錄
投審稿系統
DOI註冊
線上購買
高點網路書店 
元照網路書店
博客來網路書店
教育資源
教育網站
國際教育網站
關於高教
高教簡介
出版授權
合作單位
知識達 知識達 知識達 知識達 知識達 知識達
版權所有‧轉載必究 Copyright2011 高等教育文化事業有限公司  All Rights Reserved
服務信箱:edubook@edubook.com.tw 台北市館前路 26 號 6 樓 Tel:+886-2-23885899 Fax:+886-2-23892500